
GPS HAT for Raspberry Pi

Overview

This is an GPS expansion board designed specifically for the both
the version 1 and version 2 Raspberry Pi+ Models (This board is NOT
compatible with the original Raspberry Pi A and B boards). This
board is designed for applications that use a GPS connected via the

serial ports to the Raspberry Pi such as timing applications or
general applications that require GPS information. To facilitate PPS
the time pulse output is connected to GPIO5 so you can utilise this
board to give NTP PPS discipline.

this board is equipped with the latest Ublox NEO-6M/NEO-M8N
positioning module.

Here's the low-down on the GPS module:
-1 61dBm sensitivity, Update rate up to 5Hz, 50 channels (NEO-6M)
Only 30mA current draw (NEO-6M)
-1 67dBm sensitivity, Single GNSS update rate up to 18Hz,Concureent

GNSS update rate up to 10hz, 72 channels support NASS,BEIDOU2,SBAS
(NEO-M8N)

Built in Real Time Clock (RTC) - XH414H-IV01E backup battery for more
of time keeping even if the Pi is off!
PPS output on fix, by default connected to pinGPIO5.

Internal patch antenna which works quite well when used outdoors +
u.FL connector and SMA connector for external active antenna for when
used indoors or in locations without a clear sky view

Fix status LED blinks to let you know when the GPS has determined the
current coordinate.

Pinouts

2x20 way header is supplied and 2 suitable standoffs providing a very
robust solution .The board follows Raspberry Pi's HAT physical layout
with camera and display port notches. It is possible to stack additional
HAT's on top of this board with a suitable header.

this HAT takes over the Pi's hardware UART to send/receive data to and
from the GPS module. So, if you need to use the RX/TX pins with a
console cable, you cannot also use this HAT.

Serial Console Pins
The Raspberry Pi has only one serial port, and you do need serial to

chat to a GPS so we will take over the RXD and TXD pins.

PPS Pin
GPS's can output a 'pulse per second' for synchronizing the time. We

have a breakout for this and a closed jumper that connects it to GPIO5.

Compass
The HMC5883L is a 3 axis digital compass which can communicate via

I2C to the Raspberry Pi using only 2 data lines.

External Antenna

All Ultimate GPS modules have a built in patch antenna - this antenna
provides -162 dBm(NEO-6M) or -167 dBm(NEO-M8n)sensitivity and is
perfect for many projects. However, if you want to place your project in a
box, it might not be possible to have the antenna pointing up, or it might
be in a metal shield, or you may need more sensitivity. In these cases,
you may want to use an external active antenna.

GPS antennas use SMA connectors or uFL->SMA adapter cable.Then
connect the GPS antenna to the cable.

The uFL cable and The SMA connectors.

This tutorial assumes you are using an up-to-date Raspbian
install, have access to either LXTerminal or SSH and have an
internet connection!

We're going to go through the steps on how to use a GPS
module with your Raspberry Pi! In this tutorial we're going to
use the Raspbery Pi GPS HAT!

By default, the Raspberry Pi serial port console login is enabled.
We need to disable this before we can use the serial port for
ourselves.

To do this, simply load up the raspberry pi configuration tool:

sudo raspi-config

Then go to option 8 – Advanced Options

Then go to option A8 – Serial

Over to “No”

And finally “Ok”

Now go to “Finish” and power off your Pi with:

sudo halt

With the Raspberry Pi powered off, we can now plug our GPS
HAT in and attach an aerial.

Once everything is plugged in, we can power up the Pi.

Before we go any further we need to make sure our GPS HAT
has a “lock”. To find this out, you’ll need to refer to your GPS
HAT manual, or if you are using the HAB Supplies GPS HAT, look
for a blinking green led, labelled “timepulse”. Keep in mind that
it can take a long time for the HAT to get a lock, so be patient. If
you are struggling to get a lock after 30mins try moving you’re
aerial. For best results make sure the aerial is outside and has
direct line of sight to the sky.

Once we have a GPS lock, we can do a quick test to make sure
our Pi is able to read the data provided by the HAT.

So, log in to your Pi. You can do this via SSH or via the normal
method! Please Note. We're running Raspian from Terminal
and have an internet connection!

Start by setting up the serial port:

stty -F /dev/ttyAMA0 raw 9600 cs8 clocal -cstopb

Now simply run:

cat /dev/ttyAMA0

You should see something like this:

What you are seeing here is the raw GPS “NMEA sentence”
output from the GPS module. The lines we are interested in are
the ones beginning with $GNGGA (again, this might differ
depening on your GPS HAT you have, but look for the line that
has “GGA” at the beginning.)

If your $GNGGA lines are looking a little empty, and contains a
lot of commas “,” with nothing in between them, then you
don’t have a GPS lock.

Now it’s time to access this information in a python script!

We are going to use 2 libraries in our script:

1. serial

2. pynmea2

The first one, serial, we don’t need to install anything, this is a
default library and will be pre-installed with Raspbian.

The second one, pynmea2, we need to install. So let’s do that!
(pynmea2 is an easy to use library for parsing NMEA sentences.
We could write our own parser, but why re-invent the wheel!)

If you don’t already have “pip” installed, start by installing it:

sudo apt-get install python-pip

Once pip is installed we can then go ahead and install pynmea2
using pip:

sudo pip install pynmea2

Now we're going to start logging our GPS data using a Python
script. This is a basic script that reads the serial port, passes
each line to our pynmea2 parser and simply prints out a
formatted string containing some information.

We now need to download the python script to our Raspberry
Pi, you can view it here -
 https://github.com/modmypi/GPS/blob/master/gps.py. To do
this, we need to use the following GitHub Clone command. This
command downloads the Git repository to your current
directoy, in this case the Raspberry Pi home directory. You can
change this or create a new folder if you wish.

git clone git://github.com/modmypi/GPS

We now need to browse to the repo we just downloaded. So
change the directory to the GPS folder:

cd GPS

We can now run our Python script! To start, simply type:

sudo python gps.py

You should see some results like these:

https://github.com/Knio/pynmea2
https://github.com/modmypi/GPS/blob/master/gps.py

That's it! You're now tracking your GPS data!
CODE

import serial

import pynmea2

def parseGPS(str):

 if str.find('GGA') > 0:

 msg = pynmea2.parse(str)

 print "Timestamp: %s -- Lat: %s %s -- Lon: %s %s -- Altitude:

%s %s" %

(msg.timestamp,msg.lat,msg.lat_dir,msg.lon,msg.lon_dir,msg.altitude,m

sg.altitude_units)

serialPort = serial.Serial("/dev/ttyAMA0", 9600, timeout=0.5)

while True:

 str = serialPort.readline()

 parseGPS(str)

